
International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 19

An Optimised Binary Search Algorithm

Amannah, Constance Izuchukwu & Michael, Chief James Philip
Department of Computer Science

Ignatius Ajuru University of Education,

Rivers State,

Nigeria

Email: aftermymsc@yahoo.com

Abstract

The binary search algorithm, which is used in searching a linear collection of sorted items,

has a fast runtime of O(), but incurs the overhead of performing a search even when the

search key is in the non-feasible search space (i.e. outside the range of values in the list).

This research presents an optimized Binary Search algorithm that ensures that search is

performed if and only if the search key is within the feasible search space, thus exhibiting a

faster time complexity than the Binary Search algorithm- in particular, when the search key

is outside the feasible search space of the list. The waterfall design approach was chosen

since this design is simple, and also the problem was well understood. The design was

implemented using java programming language by compares Binary Search Algorithm.

When the search key is outside the feasible search space i.e. searching a least for an element

that is not in the feasible search space, therefore enabling search to be performed with

reduced time thus ensuring search efficiency, and achieving the state of research objectives.

Keywords: Algorithm, Optimization, Array, Search Space, Feasible Search Space, Non-

feasible Search Space, Complexity, Time Complexity.

1. INTRODUCTION

One very common application for computers is storing and retrieving information. For

example, the telephone stores information such as the names, addresses and phone numbers

of its customers. When directory assistance needs to get phone number for someone, the

operator must look up that particular piece of information from among all data that have been

stored. Taken together, all of this information is one form of a database which is organized as

a collection of records. As the amount of information to be stored and accessed becomes very

large, the computer proves to be a useful tool to assist in this task. Over the years, as

computers have been applied to these types of tasks, many techniques and algorithms have

been developed to efficiently maintain and process information in databases. The processes

of “looking up” a particular data record in a database is called searching, it is also the way to

look for something in a list. Looking up a phone number, finding a website via a search

engine and checking the definition of a word in a dictionary all involve searching large

amounts of data (Deitel and Deitel, 2007).

In Computer Science, a search algorithm is an algorithm for finding an item with specified

properties among a collection of items. The items may be stored individually as records in a

database; or may be elements of a search space defined by a mathematical formula or

procedure, such as the root of an equation with integer variables; or a combination of the two,

such as the Hamiltonian circuits of a graph. In order to do an efficient search in a database,

the records (items) should be maintained in some order-mostly referred to as data structure. A

data structure is a particular way of storing and organizing data in a computer so that it can be

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 20

used efficiently. Different kinds of data structures are suited to different kinds of applications,

and some are highly specialized to specific tasks. For example, B-trees are particularly well-

suited for implementation of databases, while compiler implementations usually use hash

tables to look up identifiers. A data structure provides a means to manage large amount of

data efficiently, such as large databases and internet indexing services. Types of data

structures include: Array, container, list, set, queue, deque, stack, string, tree, graph, array

dictionary, and so on. Depending on the type of data structure employed and the type of

application, several searching algorithms exist. These include: linear search, binary search,

binary tree search, breath-first search, depth-first search, heuristic search, best-first search,

and so on.

In a linear data structure, searching data involves determining whether a value (referred to as

the search key) is present in the data and, if so, finding its location. Two popular search

algorithms are the simple linear search and the faster but more complex binary search (Deitel

and Deitel, 2007). Linear search is the simplest search algorithm that is applied in finding a

particular value in a list that consists of checking every one of its elements, one at a time and

in sequence, until the desired one is found (Knuth, 1997). Linear search algorithm is a

special case of brute-force search. Its worst case cost is proportional to the number of

elements in the list; and so is its expected cost if all list elements are equally likely to be

searched for. Therefore, they also impose additional requirements. Linear search is usually

very simple to implement, and is practical when the list has only a few elements, or when

performing a single search in an unordered list (www.wikipedia.org). Binary (half-interval)

search algorithm finds the location or index of an item in a sorted set of data elements by

comparing the key to a designated middle element; and if not equivalent, repeatedly

constraining the middle element comparison to the smaller relevant half of the set until a

match is obtained, or the list is exhausted of which an invalid index will be returned to signify

it found no match with the key. The binary search algorithm is more efficient than the linear

search algorithm, but it requires that the array be sorted. The first iteration of this algorithm

tests the middle element in the array, if this matches the search key, the algorithm ends.

Assuming the array is sorted in ascending order, and then if the search key is less than the

middle element, it cannot match any element in the second half of the array and algorithm

continues with only the first half of the array (i.e. the element up to, but not including the

middle elements). If the search key is greater than the middle element, it cannot match any

element in the first half of the array and the algorithm continues with only the second half of

the array (i.e. the element after the middle element through the last element). Each iteration

tests the middle value of the remaining portion of the array. If the search key does not match

the element, the algorithm eliminates half the remaining elements. The algorithm ends by

either finding an element that matches the search key or reducing the sub-array to zero size

(Deitel and Deitel 2007). While linear search scans each array element sequentially, a binary

search in contrast is a dichotomy divide and conquer search algorithm (Knuth, 1997).

The advantage of the linear search is its simplicity. It is very easy to understand and

implement. Furthermore, it does not require the data in the array to be stored in any particular

order. Its disadvantage however is its inefficiency. When the linear search fails to locate an

item, it must make a comparison with every element in the array. As the number of failed

search attempts increases, so does the average number of comparisons. Obviously, the linear

search should not be used on large arrays if the speed is important (Gaddis, Walters, and

Muganda, 2013). The binary search algorithm is more efficient than the linear search

algorithm, but it requires that the array be sorted (Deitel and Deitel, 2007). However,

according to (Asagba, Osaghae, and Ogheneovo, 2010), existing literatures never consider

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 21

the storage time incurred in the binary searching.

Statement of the Problem

The binary search exhibits a complexity of O(logn) logarithmic runtime. O(logn) runtime is

among the fastest running time for conventional algorithm. In spite the runtime significance

of the binary search algorithm, it is constrained with non-essential search space and

redundant search space options. This is traced to the decimation approach employed in the

binary search algorithm. This paper is therefore designed to optimized conventional binary

search algorithm taking into account the space and redundant drawbacks of the existing

algorithm. The sequential iterated methodology is an approach that supports the optimization

process of the proposed algorithm.

Specific Objectives of the Study

The aim of this study is to develop an optimized binary search algorithm that complements

the conventional binary search algorithm. In order to achieve this aim, the following

objectives were considered:

 Evaluation of the template of the binary search algorithm

 Evaluation of the space bottleneck of the binary search algorithm

 Evaluation of the redundant search options of the binary search algorithm

 Determination of a model framework that optimizes the redundant options.

 Determination of a model framework that optimizes the space constraint.

Scope of the Study

This research covered searching of data in a linear collection of data elements called “an

array”. In particular, the search is performed when the key is outside the range of values in

the list. The data type of the element in the list is integer, which are positive whole number

that does not have fractional parts e.g. 2, 12, 10 etc. They are divided into two parts such as

static and dynamic. Searching algorithm is an algorithm for finding an item with specified

properties among a collection of items. The ways of searching an array involves linear and

binary search.

2. RELATED LITERATURE

2.1 Theoretical Background

An algorithm is a sequence of unambiguous instructions for solving a problem, that is, for

obtaining a required output for solving legitimate input in a finite amount of time (Levitin,

2012). An algorithm can be viewed as a tool for solving a well specified computational

problem. The statement of the specific in general terms the desired input/output relationship.

The algorithm describes a specific computational procedure for achieving that input/output

relation. An algorithm is said to be correct if, for every input instance, it halts with the correct

output. a correct algorithm solves the given computational problem. An incorrect algorithm

might not halt at all on some instances, or it might halt with an incorrect answer. (Cormen,

Leiserson, Rivest and Stein, 2009). We usually want our algorithms to possess several

qualities. After correctness, by far the most important is efficiency. In fact, there are two

kinds of algorithm efficiency: time efficiency, indicating how fast the algorithm runs, space

efficiency, indicating how much extra memory it uses (Levitin, 2012). Analyzing an

algorithm has come to mean predicting the resources such as memory, communication

bandwidth, or computer hardware are primary concern, but most often it is computational

time that we want to measure (Cormen et al, 2009). The analysis of algorithm is the

determination of the amount of resources (such as time and storage) necessary to execute

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 22

them. Most algorithms are designed to work with inputs of arbitrary length. Usually, the

efficiency or running time of an algorithm is stated as a function relating the input length to

the number of steps (time complexity) or storage location and space complexity –

(www.wikipedia.org). Generally, by analyzing several candidate algorithms for a problem,

we can identify a most efficient one. Such analysis may indicate more than one viable

candidate; we can often discard several interior algorithms in the process (Cormen et al,

2009).

2.2 Best-Case, Average Case and Worst-Case Complexities

The time complexity of an algorithm quantifies the amount of time taken by an algorithm to

run as a function of the length of the input. This complexity is commonly expressed using

Big-O notation which excludes coefficients and lower order terms. When expressed this way,

the time complexity is said to be described asymptotically, that is, as the input size goes to

infinity.

The best, worst and average case complexity refers to three different ways of measuring the

time complexity (or any other complexity measure) of different inputs of the same size. Since

some inputs of size n may be faster to solve than others, we define the following

complexities:

Best-case Complexity: This is the complexity of solving the problem for the best input of

size n

Worst-case Complexity: This is the complexity of solving the problem for the worst input of

size n.

Average-case Complexity: This is the complexity of solving the problem on an average.

This complexity is only defined with respect to a probability distribution over the input

The worst-case time complexity indicates the longest running time performed on an

algorithm given by input of size n, and this guarantees that the algorithm finishes on time.

Moreover, the order of growth of the worst-case complexity is used to compare the efficiency

of two algorithms.

In the theory of algorithms, the Big-O notation is typically used for three purposes:

1. To hide constants that might be irrelevant or inconvenient to compute.

2. To express a relatively small “error” term in an expression describing the running

time of an algorithm.

3. To bound the worst case (Sedgewick and Flajolet, 2013).

2.3 The Big-O Notation

In mathematics, Big-O notation describes the limiting behaviour of a function when the

argument tends towards a particular value or infinity, usually in terms of simpler functions. It

is a member of a larger family of notations that is called Landau notation, Bachmann-Landau

notation (after Edmund notation Landau and Paul Bachmann), or asymptotic notation. In

Computer Science, Big-O notation is used to classify algorithms by how they respond (e.g.,

in their processing time or working space requirements) to changes in input size. Big-O

notation characterizes functions according to their growth rates: different functions with the

same growth rate may be represented using the same O notation. The letter O is used because

the growth rate of a function is also referred to as order of the function. A description of a

function in terms of Big-O notation usually only provides an upper bound on the growth rate

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 23

of the function.

2.3.1 Formal Definition of Big-O Notation

Let F and g be two functions defined on some subset of the real numbers. One writes:

if and only if there is a positive constant M such that for all sufficiently large values of X,

 is at most M multiplied by the absolute value of . That is, F(X) = if and

only if there exists a positive real number M and a real number Xo such that:

In many contexts, the assumption that we are interested in the growth rate as the variable X

goes to infinity is left unstated, and one writes more simply that . The

notation can also be used to describe the behaviour of near some real number a (often, a =

O): we say

if and only if there exist positive numbers and M such that

If is non-zero for values of X sufficiently close to a, both of these definitions can be

unified using the limit superior.

If only if

In typical usage, the formal definition of O notation is not used directly; rather, the O notation

for a function F is derived by the following simplification rules:

If is a sum of several terms, the one with the largest growth rate kept, and all others

omitted.

If is a product of several factors, any constants (terms in the product that do not depend

on X) are omitted.

It can be illustrated thus:

Let and suppose we wish to simplify this function, using O

notation, to describe its growth rate as X approaches infinity. This function is the sum of

three terms: of these three terms, the one with the highest growth rate is

the one with the largest exponent as a function of X namely 6X
4
. Now one may apply the

second rule: is a product of 6 and X
4
 in which the first factor does not depend on X.

Omitting this factor results in the simplified form X
4
. Thus, we say that is

a Mathematically, we can write . One may confirm this

calculation using the formal definitions: Let

Applying the formal definition from above, the statement that is equivalent

to its expansion.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 24

For some suitable choice of Xo and M and for all . To prove this, let

|

So,

2.3.2 Determining the Efficiency of an Algorithm

The Big-O notation indicates the worst-case runtime for an algorithm – that is, how hard an

algorithm may have to work to solve a problem. For searching and sorting algorithms, this

depends particularly on the number of data elements. Suppose an algorithm is designed

to test whether the first element of an array has 10 elements, this algorithm requires one

comparison. If the array has 1000 elements, it still requires one comparison. In fact, the

algorithm is completely independent of the number of elements in the array. This algorithm is

said to have a constant run time, which is represented in Big-O notation as O(1). An

algorithm that is O(1) does not necessarily require only one comparison. O(1) just means that

the number of comparisons is constant. It does not grow as the size of the array increases. An

algorithm that tests whether the first element of an array is equal to any of the next three

elements is still O(1) even though it requires three comparisons. An algorithm that tests

whether the first of an array is equal to any of the other elements of the array will require at

most n-1 comparisons, where n is the number of elements in the array. If the array has 10

elements, this algorithm requires up to 9 comparisons. As n grows larger, then n part of the

expression “dominates”, and subtracting one becomes inconsequential.

Big O is designed to highlight these dominant terms and ignore terms that become

unimportant as n grows. For this reason, an algorithm that requires a total of n-1 comparisons

(such as the one we described earlier) is said to be O(n). An O(n) algorithm is referred to as

having a linear run time. O(n) is often pronounced “on the order of n” or more simply “order

n”. Now suppose you have an algorithm that tests whether any element of an array is

duplicated elsewhere in the array. The first element must be compared with every other

element in the array. The second element must be compared with every other element except

the first it was already compared to the first). The third element must be compared with every

element the first two.

In the end, this algorithm will end up making (n-1) + (n-2) +…+ 2+1 or

comparisons. As n increases, the n
2
 term dominates and the n term becomes

inconsequential. Again, Big-O notation highlights the n
2
 term, leaving . But as we have

seen, constant factors are omitted in Big-O notation.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 25

Big-O is concerned with how an algorithm’s run time grows in relation to the number of

items processed. Suppose an algorithm requires n
2
 comparisons, with four elements, the

algorithm requires 16 comparisons; with eight elements, 64 comparisons. With this

algorithm, doubling the number of elements quadruples the number the number of

comparisons. Consider a similar algorithm requiring comparisons. With four elements

the algorithm requires eight comparisons; with eight elements; 32 comparisons. Both of these

algorithms grow as the square of n; so Big-O ignores the constant and both algorithms are

considered to be O(n
2
), which is referred to as quadratic run time and pronounced “on the

order of n squared” or more simply “order n-squared”.

When n is small, O(n
2
) algorithms (running on today’s billion – operation – per-

second personal computers) will not noticeably affect performance. But as n grows, you will

start to notice the performance degradation. An O(n
2
) algorithm running on a billion-element

array would require a trillion operations” (where each would actually require several machine

instructions to execute. This could require several hours to execute. There are algorithms with

more favourable Big-O measures. These efficient algorithms often take a bit more cleverness

and work to create, but their superior performance can be well worth the extra, especially as n

gets large and as algorithms are combined into larger programs (Deitel and Deitel, 2007).

Table 2.1 is a list of classes of some functions that are commonly encountered when

analyzing algorithms. The slower growing functions are listed first; C is some arbitrary

constant.

Table 1: Big-O Runtimes

Notation Name

O(1) Constant

O(log n) Logarithmic

O((log n)c) Polylogarithmic

O(n) Linear

O(n
2
) Quadratic

O(n
c
) Polynomial

O(c
n
) Exponential

(Source: www.wikipedia.org).

2.4 The Linear (Sequential) Search Algorithm

The linear search is a very simple algorithm. Sometimes called a sequential search, it uses a

loop to sequentially step through array, starting with the first element. It compares each

element with the value being searched for, and stops when either the value is found or the end

of the array is encountered. If the value being searched for is not in the array, the algorithm

will unsuccessfully search to the end of the array (Gaddis et al, 2003).

2.4.1 Performance of Linear Search Algorithm

The advantage of the linear search is its simplicity. It is very easy to understand and

implement. Furthermore, it doesn’t require the data in the array to be stored in any particular

order. Its disadvantage, however, is its inefficiency. If the array being searched contains

20,000 elements, the algorithm will have to look at all 20,000 elements in order to find a

value stored in the last element (so the algorithm actually reads an element of the array

20,000 times). In an average case, an item is just as likely to be found near the beginning of

the array as near the near. Typically, for an array of N items, the linear search will locate an

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 26

item in N/2 attempts if an array has 50,000 elements, the linear search will make a

comparison with 25,000 of them in a typical case. This is assuming, of course, that the search

item is consistently found in the array, (N/2) the average number of comparisons. The

maximum number of comparison is always N). When the linear search fails to locate an item,

it must make a comparison with every element in the array. As the number of failed search

attempts increases, so does the average number of comparisons. Obviously, the linear search

should not be used on large arrays if the speed is important (Gaddis et al, 2013).

2.5 The Binary Search Algorithm

The binary search algorithm is a clever algorithm that is much more efficient than the linear

search. Its only requirement is that the values in the array be sorted in order. Instead of testing

the array’s first element, this algorithm starts with the element in the middle. If that element

happens to contain the desired value, then the search is over. Otherwise, the value in the

middle element is either greater than or less than the value being searched for. If it is greater,

then the desired value (if it is in the list) will be found somewhere in the first half of the

array. If it is less, then the desired value (again, if it is in the list) will be found somewhere in

the last half of the array. In either case, half of the array elements have been eliminated from

further searching. If the desired value was not found in the middle element, the procedure is

repeated for the half of the array that potentially contains the value. For instance, if the last

half of the array is to be searched, the algorithm immediately tests its middle element. If the

desired value isn’t found there, the search is narrowed to the quarter of the array that resides

before or after that element. This process continues until either the value being searched for is

found or there are no more elements to test (Gaddis et al, 2013).

2.5.1 Performance of Binary Search Algorithm

With each test that fails to find a match at the probed position, the search is continued with

one or other of the two-sub-intervals, each at most half the size. More precisely, if the

number of items, N, is odd then both sub-intervals will contain (N-1)/2 elements, if the

original number of items is N then after the first iteration there will be at most N/2 items

remaining, then at most N/4 items, at most N/8 items, and so on. In the worst-case scenario,

searching a sorted array of 1023 elements will take only 10 comparisons when using a binary

search. Repeatedly dividing 1023 by 2 (because after each comparison we are able to

eliminate half of the array) and rounding down (because we also remove the middle

elements) yields the values 51,255, 127, 63, 31, 15, 7, 3, 1 and 0. The number 1023 (210-1) is

divided by 2 only 10 times to get the value 0, which indicates that there are no more elements

to test. Dividing by 2 is equivalent to one comparison in the binary search algorithm. Thus,

an array of 1, 048,575 (220-1) elements takes a maximum of 20 comparisons to find the key,

and an array of over one billion elements takes a maximum of 30 comparisons to find the

key. This is a tremendous improvement in performance over the linear sear. For a one billion

element array, this is a difference between an average of 500 million comparisons for the

linear search and maximum of only comparisons for the binary search! The maximum

number of comparisons needed for the binary search of any sorted array is the exponent of

the first power of 2 greater than the number of elements in the array, which is represented as

log2n. All logarithms grow at roughly the same rate, so in Big-O notation, the base can be

omitted. This results in a Big-O of O(logn) for a binary search which is also known as

logarithmic run time (Deitel and Deitel, 2007). Table 2.2 gives a summary of the

performance of the binary search algorithm.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 27

Table 2: Binary Search Runtimes

Data structure Array

Worst-case performance O(logn)

Best-case performance O(1)

Average-case performance O(logn)

(Source: www.wikipedia.org)

2.6 Modified Binary Search Algorithm

Ankit, Rishikesh and Tanaya (2014) on their study looked at the modification to the

traditional binary search algorithm. They found that binary search uses only the middle

element to check whether it matches with the input element. The aim of their study is to

suggest changes to the traditional binary search algorithm in a way to optimize them. The

method used is the modified method that is the way to suggest changes to the binary search

algorithm which optimizes the worst cases of the traditional binary search. They were limited

to look at the run-time analysis (order of growth). This run-time analysis is based on

algorithm analysis which is focused on the growth rate of the running time as a function of

the input size, n. This run-time is also based on a way of analyzing algorithms using

mathematical notation. Time factor may be a barrier of not looking at this.

2.7 Analysis of Linear and Binary Search Algorithm

Sapinder, Ritu and Arvinder, (2012) worked on analysis of linear and binary search

algorithm. The aim of this study was to compare and contrast the linear and binary search

algorithm. Here, linear search is simple to implement in a larger time while searching an

item, where as binary search algorithm searches an item with smaller time as compared to

linear search. They were limited in discussing about the run-time analysis (order of growth)

and Big-O’ notation also the best case, average case and worst case complexity. The method

used in solving the problem of the work was visual basic to analyze the different metrics of

linear and binary search algorithms.

2.8 Parallel search and Binary Search

Digalakis, Marin and Vega (2003) on their study considered parallel search and binary

search. Their view is that parallel search is a search algorithm that searches an item in

unordered array. They considered that the searching time obtained in parallel search is better

than the searching time obtained in binary searched. They viewed binary search as an

algorithm for locating the position of an element x in a sorted list. The aim of their study is to

look for their efficiency. In the limitation of study, they were limited in discussing the run-

time analysis (order of growth) and Big-O’ notation. The run-time analysis focuses on the

growth rate of the running-time as a function of the input size. This also focuses on analyzing

algorithms using mathematical notation for functions. On their work, they looked at the best,

worst and average cases. In their result, after comparison on their efficiency, two parameters

were used to study the efficiency of parallel systems. The speed-up that indicates the factor

by which the execution time for the application change is calculated as:

Speed-up = Execution time for one processor

 Execution time for processors

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 28

On comparing, they found out that the efficiency of the system over the binary search

increases linearly when the number of item increases. This method that is used is Heapsor.

3. Methodology
The methodology employed in this research is the waterfall model. The waterfall was chosen

since it is sequential software development model in which development is seen as flow

steadily downwards (like a waterfall) through several phases. The waterfall model maintains

that one should move to a phase only when its proceeding phase is completed and perfected.

Phase of development in the waterfall model are thus discrete and there is no jumping back

and forth or overlap between them. Also, the problem was well understood. This research

will be implemented using the java programming language. The running time for optimized

binary search will be measured; that of binary search will be measured also and recorded. The

running time will then be used for the analysis of their performance.

4. THE PROPOSED METHOD

The optimized Binary search algorithm assumes that the list to be searched is sorted. Its aim

is to determine if the key searched fir is within the feasible search space that is within the

range of the values in the list. If the key is outside the range that is in the non-feasible search

space; then the key cannot exist in the list, therefore, needless to perform the search. If it is

within range, the search can then be performed; therefore, search is performed if and only if

the key is within the feasible search space, otherwise the algorithm terminates. Thus the time

complexity performance will improve from O(logn)-logarithmic runtime, to O(1)-constant

runtime. The former represents a vast improvement on the later.

The optimized Binary search works as follows:

Determine lower and upper index.

If key is less than elements in lower index, or if key is greater than element in upper index,

therefore, if the key is outside the feasible search space and cannot be contained in the list.

Hence return-1 and terminate otherwise the key is within the feasible search space.

Determine mid index

If key equals the element, return the mid index (key has been found), else if key is less than

the mid element then set upper index to mid-1, else 1, else the key is greater than the mid-

element, hence set lower index to mid +1. Repeat until is found.

Return-1 if search is exhausted and key is not found. It is to be noted that the optimized

binary search algorithm focuses on improving the time complexity in particular when the key

is out of range of the value in the lists. It however, exhibits the same time complexity as the

Binary search space that is the key is within range. Hence, this research does not consider the

performance when the key is within the range of values in the sorted list.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 29

Fig. 1: Architecture of the Proposed Method

Fig. 2: Binary algorithm search Space

… … … 7 8 10 14 17 25 29 32 35 40 … … …

Input

List a[n], key

Process

Arrays. Sort (a)
to sort list a [n]

Call search
Algorithm

Estimate runtime

Output

Average

runtime

Non-feasible
search space

Non-feasible

search space

Includes both

feasible and non-

feasible search

space
Binary search

Algorithm search

space

Minimum
element in list

Feasible

search
space

Maximum
element in
list

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 30

From figure 2 the search space of the Binary Search algorithm includes both feasible and

non-feasible search spaces. This means that search will be performed even when the elements

is in the non-feasible search space i.e. is outside the range of values, thus never present in the

list.

Let key =50 (which is in the non-feasible search space)

In each iteration of the algorithm, the bottom half of the array is discarded until there is only

one element.

Fig. 3: Binary Search Illustration

After 3 iterations, the algorithm is unsuccessful i.e. does not find a match (40 ≠ key). It

returns-1 (indicating the key was not found) and terminates.

Optimized Binary Search-Illustration

Let us assume a sorted list of 10 elements i.e. B [0-9] as shown in figure 4

Fig. 4 sorted list B [0-9]

7 8 10 14 17 25 29 25 35 40

 2

5

4

2

9

4

3

2

4

3

5

4

4

0

4

7 8 1

0

1

4

4

1

7

4

2

5

4

2

9

4

3

2

4

3

5

4

4

0

4

2

5

4

2

9

4

3

2

4

3

5

4

4

0

4

3

5

4

4

0

4

4

0

4

Mid

Element
Mid

Element

Mid

Element
Mid

Element

Mid

Element

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 31

Fig. 5: Optimized Binary Search Space

From figure 5, the search space of the optimized binary search algorithm includes only the

feasible search space; hence elements in the non-feasible search space are never searched.

Let key =50 (which is in the non-feasible search space). The algorithm tests the key with the

minim and maximum elements in the list to determine if the key is with the feasible search

space or not.

Fig 6: Optimized binary Search illustration

7 8 10 144 174 254 294 32

4

35

4

40

Key<7? ‘false’
Key > 40? ‘True’

… … 7 8

10

4

14

4

17 2

5

2

9

35 40 … … … …

Non-feasible

Search

space

Includes both

feasible and non-

feasible search

space Optimized Binary

Search Algorithm

Search Space

Non-feasible
Search

space

Minimum
element in
list

Feasible
search

space

Maximum
element in

list

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 32

Since key >40 is true, the algorithm includes that the key is out of range that is within the

non-feasible search space, therefore the algorithm performs no search. It returns-1 (indicating

the key was not found) and terminates.

5. RESULTS

Table 3: Runtime Values (milliseconds)

SEARCH VALUE

(Integers)

OPTIMISED RUNTIME

(Milliseconds)

ORDINARY RUNTIME

(Milliseconds)

10 15 234

20 70 422

30 31 639

40 62 843

50 47 1045

60 31 1248

70 62 1560

80 78 1748

90 47 1950

100 63 2168

Fig.7: Ordinary Binary Search Runtime

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 33

From table 3 (demonstrated in figure 7), it can be seen that the average runtimes of Binary

search increases roughly, as the input size increases i.e. from 234 ms when n=10 to 2168ms

when n=100.

 Fig. 8: Optimized Binary Search Runtime

Also, in table 3 (demonstrated in figure 8) shows the average runtimes of the optimized

binary search which appears to be in an interval, ranging from15ms to 78ms as the input size

is varied from n=10 to n=100, the average runtimes decreases.

6. SUMMARY AND CONCLUSION

The binary search algorithm is a clever algorithm that is more efficient than the linear search

algorithm. It is a dichotomic divides and conquer search algorithm with a runtime of O

(logn), but requires that the data to be searched is sorted. The binary search algorithm

however, exhibits the same runtimes of O (logn) even when the element searched for is not in

list-in particular, when the element is outside the range of values, thereby incurring extra

overhead which could be avoided.

The optimised binary search algorithm presented in this research is an optimization of the

Binary search algorithm, eliminating the need for a search if the key (element) is outside the

range of values in the list i.e. outside the feasible search space. Average runtimes (in

milliseconds) of the optimized Binary search and Binary search algorithms was measured and

the data used to validate the efficiency of the optimized Binary search over the Binary search,

thereby satisfying the objectives of this research.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 34

5.2 Conclusion

This research has presented an optimized binary search algorithm which exhibits a runtime of

O (1)- constant runtime-when search is performed on a linear collection of element in which

the key is out of the range of values in the list i.e in the non-feasible search space. This is a

vast improvement on the Binary Search algorithm which has a runtime of O (Logn)-

Logarithmic runtime-even when key is in the non-feasible search space.

Analysis of the runtimes of the optimized Binary Search and the runtimes of Binary

algorithm shorted that the average runtimes of Binary Search increases roughly, as the input

size, n, increases.

The optimized Binary Search will thus enable search to be performed with faster time,

thereby ensuring search efficiency; however, it will exhibit the same runtime as the Binary

Search algorithm if the vale searched for is within the feasible search space (within the range

of values in the list).

REFERENCES
Ankit, R.C., Rishikesh, M., and Tanaya, M. (2014): Modified Binary Search Algorithm.

International Journal of applied Information Systems (ISAIS): 224-0868

Foundation Computer Sciences, New York, USA, 7 (25).

Asabga, P.O. Osaghae, E.O. and Ogheneovo, E.E, (2010): “Is Binary Search Techniques

faster than linear Search techniques?”, “University of Port Harcourt. Rivers State.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009): Introduction to algorithms,

3
rd

 edition. Massachusetts Institute of Technology. USA

Deittel, P.J. and Deitel, H.M. (2007):” Java How to Program, 7
th

 edition Upper saddle River,

New Jersey: Prentice Hall.

Digalakis, J., Marvin, M.J., Yega (2003): Parallel Evolutionary algorithms on message

Passing clusters. http://www.it.uom.gr/people/digalakis/digamarg

2003pdf.Retrieved 20/4/2012.

Gaddis, T., Walters, J., and Muganda, G. (2013): Starting out with C++- Early Objects, 8
th

edition. Reading, Massachusetts: Addision-Wesley

http://en.wikipedia.org/wiki/\Binary-search- algorithm-Binary Search. Retrieved:24/05/2014.

Knuth, D. (1997): The Art of Computer Programming, 3
rd

 Eddition. Reading, Massachusetts:

Addison-Welsley.

Levitin, A (2012): Introduction to the design and analysis of algorithm, 3
rd

 edition. Upper

Saddle River, New Jersey: Pearson Education Inc.

Safinder, Rity, and Arvinder, S. (2012): Analysis of Linear and Binary search Algorithm.

International Journal of Computers and Distributed Systems, 1 (20).

Sedgewick, R. and Flajolet, P. (2013): An Inrtroduction to the Analysis of Algorithms, 2
nd

edition.. Upper Saddle River, New Jersey: Pearson Education Inc.

http://en.wikipedia.org/wiki/Binary-search-

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 35

APPENDIX A

SAMPLE OUPUT

SAMPLE OUTPUT FROM IDE ENVIRONMENT

INPUT SIZE N=10

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 36

INPUT SIZE N=20

INPUT SIZE N=50

INPUT SIZE N=100

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 37

APPENDIX B

PROGRAM LISTING

PROGRAM 1: Optimised Binarysearch.java
/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package themainsearch;

/**

 *

 * @author PRECISION

 */

public class optimisedSearch {

 int searchElementoptimized(int numList[], int toSearch) {

 int startIndex = 0;

 int endIndex = numList.length - 1;

 int midindex = (startIndex + endIndex) / 2;

 int midElement = numList[midindex];

 int foundIndex = 0;

 long startTime = System.nanoTime();

 while (startIndex <= endIndex) {

 if (midElement < toSearch) {

 startIndex = midindex + 1;

 midindex = (startIndex + endIndex) / 2;

 midElement = numList[midindex];

 } else if (midElement > toSearch) {

 endIndex = midindex - 1;

 midindex = (startIndex + endIndex) / 2;

 midElement = numList[midindex];

 } else {

 foundIndex = midindex;

 break;

 }

 } long endTime = System.nanoTime();

 long optimizedTime=endTime-startTime;

 System.out.println(optimizedTime);

 return foundIndex; }

}

PROGRAM 2: BINARY SEARCH. JAVA

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package themainsearch;

/**

 *

 * @author PRECISION

 */

public class ordinarySearch

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 38

int searchElement1(int numList[], int toSearch) {

 int foundIndex = 0;

 long startTime = System.nanoTime();

 for (int i = 0; i < numList.length; i++) {

 if (numList[i] == toSearch) {

 foundIndex = i;

 }

 }

 long endTime = System.nanoTime();

 long ordinaryTime=endTime-startTime;

 System.out.println(ordinaryTime);

 return foundIndex;

 }

APPENDIX C

MAIN SEARCH CODE (OPTIMIZED AND BINARY SEARCH ALGORITHM)

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package themainsearch;

 import java.util.Arrays;

import java.util.Scanner;

/**

 *

 * @author PRECISION

 */

public class TheMainSearch {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) throws Exception{

 ordinarySearch ors= new ordinarySearch();

 optimisedSearch ops= new optimisedSearch();

 Scanner input=new Scanner(System.in);

 System.out.println("Enter The Search Value");

 int val= input.nextInt();

 // Create 100 element array.

 int[] values = new int[120];

 for (int i = 0; i < 120; i++) {

 values[i] = i;

 }

 long t1 = System.currentTimeMillis();

 // ... The Optimized Binary Search.

 for (int i = 0; i < 1000000; i++) {

 int index = Arrays.binarySearch(values, val);

 }

 long t2 = System.currentTimeMillis();

 // ... The ordinary Binary Search.

 for (int i = 0; i < 10000000; i++) {

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 3 No.1 2017

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 39

 int index = -1;

 for (int j = 0; j < values.length; j++) {

 if (values[j] == val) {

 index = j;

 break;

 }

 }

//

 }

 long t3 = System.currentTimeMillis();

 // ... Calculating and Displaying the Time.

 long Optimized=t2 - t1;

 System.out.println("The Optimised Time in milliseconds "+" "+Optimized+"ms");

 long ordinary=t3 - t2;

 System.out.println("The ordinary Time in milliseconds "+" "+ordinary+"ms");

 }

}

